Search results
Advancing metabolomics technologies
The recent explosion in genome data was made possible by 20-years of advances in analytical chemistry, which increased the cost-efficiencies of DNA sequencing technologies. Similar technological advances are now required to more efficiently characterize the functionality of an organism’s genetic potential. The Nikolau group is developing metabolomics as a functional genomics tool to decipher metabolic and physiological functions of genes of unknown function. For example, the Arabidopsis Metabolomics Consortium ( Read more about Advancing metabolomics technologies
Enzymes for bioengineering
Enzymes are the workhorses of metabolism, catalyzing chemical transformations that would otherwise be very slow. Enzymes therefore offer many biotechnological applications in the chemical and food industries. The Nikolau group has focused on key enzyme systems that have applications in the emerging biorenewable chemical industry. Read more about Enzymes for bioengineering
New Plant Journal article
Congratulations to Xin Guan and Basil Nikolau on their new Plant Journal article, "A phosphopantetheinyl transferase that is essential for mitochondrial fatty acid biosynthesis," epublished on September 24.
Nikolau Group Research
Research in the Nikolau Lab focuses on deciphering new knowledge concerning the structure and regulation of metabolic processes providing core capabilities in interdisciplinary initiatives on the Iowa State University campus.
Biotin metabolic network
Biotin is a water-soluble vitamin that is biosynthesized by plants, and some bacteria and fungi. One of its biochemical functions is as a covalently-bound cofactor on a family of enzymes that catalyze reactions in a variety of crucial metabolic processes. Examples of such enzymes are acetyl-CoA carboxylase, methylcrotonyl-CoA carboxylase, propionyl-CoA carboxylase and geranoyl-CoA carboxylase, which are required for lipogenesis, amino acid metabolism and isoprenoid metabolism. Read more about Biotin metabolic network
Acetyl-CoA metabolic network
Acetyl-CoA is a metabolite that sits at a key point connecting catabolic and anabolic metabolism, and it is also juxtaposed between central carbon metabolism and specialized metabolism. Because of the unique central metabolic position that acetyl-CoA occupies, flux through this intermediate is highly regulated by the integration of a variety of different mechanisms. Read more about Acetyl-CoA metabolic network
Specialized metabolism
The term “specialized metabolism” encompasses metabolic processes that are asymmetrically distributed across phylogenetic space - historically this metabolism was called secondary metabolism. In contrast to central metabolism, which is common to all life forms, specialized metabolism generates the “chemical-spice” of different life forms, and thus is responsible for the large degree of chemical diversity in the biosphere.
Metabolomics
Metabolomics is the science of determining the metabolome of a biological sample. The metabolome is the collection of low molecular weight organic molecules associated with a biological sample, which are not direct products of genetic information (as defined by the central dogma). These organic molecules directly interact with macromolecules (usually enzymes), which themselves are products of genetic information, and these interactions may or may not lead to chemical transformations.
Hydrocarbons and cuticular lipids
Simple hydrocarbons (e.g. n-alkanes and n-alkenes), that are at the chemical level identical to currently used gasoline and diesel fuels, occur discreetly in biological systems. Some algae and photosynthetic microbial systems accumulate simple hydrocarbons in large quantities as a means of storing carbon and energy. Other organisms, such as plants and insects produce these compounds as part of the cuticle, which acts as a water barrier at the interface between the organism and the environment.