Gold

Nilsen-Hamilton group and engineering collaborators

Nilsen-Hamilton Group and Engineering Collaborators

About Us

A fundamental feature of life is the interaction between its component parts, without which life would not exist. Interaction occurs at all levels. At the molecular level, proteins and nucleic acids form complexes that create the structural and functional entity, which is the cell. Cells interact to form multicellular organisms (eukaryotes) or communities (prokaryotes). At both the molecular and cellular levels, interaction involves communication in addition to association. It is by way of these communications that most of the miracles of nature are achieved. We are interested in understanding how molecules, cells and organisms coordinate their activities to achieve functions that they cannot do individually. In the past, this interest has involved studies of cellular responses to growth factors and other regulators. Now we are also interested in plant-microbe interactions.

Currently, our focus is to develop the sensors that are need to detect extracellular regulators in real time. This effort has brought us to studying nucleic acid aptamers that can be linked to small sensors for detecting cell regulators and toxins in the environment of cells and in our general environment. Although our studies of cellular responses continue, a major part of our current work is to develop and  understand aptamers sufficiently so that they can be used in sensors to detect, in real time, the change in the molecular composition of our environment.

Learn more about our lab


Learn more about our collaborators' research programs: Computational modeling: Monica Lamm, Microbiology: Larry Halverson, Microfulidics: Todd Kingston, Plant biochemistry: Olga Zabotina, Sensor development: Pranav Shrotiya, Viruses: Wendy Maury

 

Recent Publications

2022

Anisuzzaman SM, Geraskin IM, Ilgu M, Bendickson L, Kraus GA, and Nilsen-Hamilton M.'Ligands with polyfluorophenyl moieties promote a local structural rearrangement in the Spinach2 and Broccoli aptamers that increases ligand affinities'. RNA. 2022 28: 865-877. DOI: 10.1261/rna.079005.121 Google Scholar

Yan S, Ilgu M, Nilsen-Hamilton M and Lamm MH 'Computational Modeling of RNA Aptamers: Structure Prediction of the Apo State'. The Journal of Physical Chemistry'. 2022 126 (37):7114-7125.DOI: 10.1021/acs.jpcb.2c04649 Google scholar

Singappuli Arachchige D, Feng S, Wang L, Palo PE, Shobade SO, Thomas M and Nilsen-Hamilton M (2022) The Magnetosome Protein, Mms6 from Magnetospirillum magneticum strain AMB-1, is a Lipid-Activated Ferric Reductase. International Journal of Molecular Science'. 2022 28 (8) DOI: 10.3390/ijms231810305 Google Scholar

2021

Ozturk M, Nilsen-Hamilton M, Ilgu M (2021) Aptamer Applications in Neuroscience. Pharmaceuticals. 14(12):1260-. doi:10.3390/ph14121260. Google Scholar

2020

W. Zhao, Bendickson, L., and Nilsen-Hamilton, M., “The Lipocalin2 Gene is Regulated in Mammary Epithelial Cells by NFκB and C/EBP In Response to Mycoplasma”, Scientific Reports, vol. 10, no. 1, 2020. DOIGoogle Scholar

S. Yan, Peck, J., Ilgu, M., Nilsen-Hamilton, M., and Lamm, M. H., “The Sampling Performance of Multiple Independent Molecular Dynamics Simulations of an RNA Aptamer”, ACS Omega, vol. 5, no. 32, pp. 20187–20201, 2020. Google Scholar

View all Publications